gemv_batch#
Computes a group of gemv operations.
Description
The gemv_batch routines are batched versions of
gemv, performing multiple gemv operations in a
single call. Each gemv operations perform a scalar-matrix-vector
product and add the result to a scalar-vector product.
gemv_batch supports the following precisions.
T
float
double
std::complex<float>
std::complex<double>
gemv_batch (Buffer Version)#
Description
The buffer version of gemv_batch supports only the strided API.
The strided API operation is defined as:
for i = 0 … batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are matrices at offset i * stridex, i * stridey, in x and y.
Y := alpha * op(A) * X + beta * Y
end for
where:
op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,
alpha and beta are scalars,
A is a matrix and X and Y are vectors,
The x and y buffers contain all the input matrices. The stride
between vectors is given by the stride parameter. The total number of
vectors in x and y buffers is given by the batch_size
parameter.
Strided API
Syntax
namespace oneapi::mkl::blas::column_major {
void gemv_batch(sycl::queue &queue,
onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)
}
namespace oneapi::mkl::blas::row_major {
void gemv_batch(sycl::queue &queue,
onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)
}
Input Parameters
- queue
The queue where the routine should be executed.
- trans
Specifies op(
A) the transposition operation applied to the matricesA. See oneMKL Defined Datatypes for more details.- m
Number of rows of op(
A). Must be at least zero.- n
Number of columns of op(
A). Must be at least zero.- alpha
Scaling factor for the matrix-vector products.
- a
Buffer holding the input matrices
Awith sizestridea*batch_size.- lda
The leading dimension of the matrices
A. It must be positive and at leastmif column major layout is used or at leastnif row major layout is used.- stridea
Stride between different
Amatrices.- x
Buffer holding the input vectors
Xwith sizestridex*batch_size.- incx
The stride of the vector
X. It must be positive.- stridex
Stride between different consecutive
Xvectors, must be at least 0.- beta
Scaling factor for the vector
Y.- y
Buffer holding input/output vectors
Ywith sizestridey*batch_size.- incy
Stride between two consecutive elements of the
yvectors.- stridey
Stride between two consecutive
Yvectors. Must be at least (1 + (len-1)*abs(incy)) wherelenismif the matrixAis non transpose ornotherwise.- batch_size
Specifies the number of matrix-vector operations to perform.
Output Parameters
- y
Output overwritten by
batch_sizematrix-vector product operations of the formalpha* op(A) *X+beta*Y.
gemv_batch (USM Version)#
Description
The USM version of gemv_batch supports the group API and strided API.
The group API operation is defined as:
idx = 0
for i = 0 … group_count – 1
for j = 0 … group_size – 1
A is an m x n matrix in a[idx]
X and Y are vectors in x[idx] and y[idx]
Y := alpha[i] * op(A) * X + beta[i] * Y
idx = idx + 1
end for
end for
The strided API operation is defined as
for i = 0 … batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are vectors at offset i * stridex, i * stridey in x and y.
Y := alpha * op(A) * X + beta * Y
end for
where:
op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,
alpha and beta are scalars,
A is a matrix and X and Y are vectors,
For group API, x and y arrays contain the pointers for all the input vectors.
A array contains the pointers to all input matrices.
The total number of vectors in x and y and matrices in A are given by:
For strided API, x and y arrays contain all the input
vectors. A array contains the pointers to all input matrices. The
total number of vectors in x and y and matrices in A are given by the
batch_size parameter.
Group API
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,
onemkl::transpose *trans,
std::int64_t *m,
std::int64_t *n,
T *alpha,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T *beta,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,
onemkl::transpose *trans,
std::int64_t *m,
std::int64_t *n,
T *alpha,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T *beta,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- trans
Array of
group_countonemkl::transposevalues.trans[i]specifies the form of op(A) used in the matrix-vector product in groupi. See oneMKL Defined Datatypes for more details.- m
Array of
group_countintegers.m[i]specifies the number of rows of op(A) for every matrix in groupi. All entries must be at least zero.- n
Array of
group_countintegers.n[i]specifies the number of columns of op(A) for every matrix in groupi. All entries must be at least zero.- alpha
Array of
group_countscalar elements.alpha[i]specifies the scaling factor for every matrix-vector product in groupi.- a
Array of pointers to input matrices
Awith sizetotal_batch_count.See Matrix Storage for more details.
- lda
Array of
group_countintegers.lda[i]specifies the leading dimension ofAfor every matrix in groupi. All entries must be positive and at leastmif column major layout is used or at leastnif row major layout is used.- x
Array of pointers to input vectors
Xwith sizetotal_batch_count.See Matrix Storage for more details.
- incx
Array of
group_countintegers.incx[i]specifies the stride ofXfor every vector in groupi. All entries must be positive.- beta
Array of
group_countscalar elements.beta[i]specifies the scaling factor for vectorYfor every vector in groupi.- y
Array of pointers to input/output vectors
Ywith sizetotal_batch_count.See Matrix Storage for more details.
- incy
Array of
group_countintegers.incy[i]specifies the leading dimension ofYfor every vector in groupi. All entries must be positive andincy[i]must be at leastm[i]if column major layout is used or at leastn[i]if row major layout is used.- group_count
Specifies the number of groups. Must be at least 0.
- group_size
Array of
group_countintegers.group_size[i]specifies the number of matrix-vector products in groupi. All entries must be at least 0.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- y
Overwritten by vector calculated by (
alpha[i]* op(A) *X+beta[i]*Y) for groupi.
Return Values
Output event to wait on to ensure computation is complete.
Strided API
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,
onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,
onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- trans
Specifies op(
A) the transposition operation applied to the matricesA. See oneMKL Defined Datatypes for more details.- m
Number of rows of op(
A). Must be at least zero.- n
Number of columns of op(
A). Must be at least zero.- alpha
Scaling factor for the matrix-vector products.
- a
Pointer to the input matrices
Awith sizestridea*batch_size.- lda
The leading dimension of the matrices
A. It must be positive and at leastmif column major layout is used or at leastnif row major layout is used.- stridea
Stride between different
Amatrices.- x
Pointer to the input vectors
Xwith sizestridex*batch_size.- incx
Stride of the vector
X. It must be positive.- stridex
Stride between different consecutive
Xvectors, must be at least 0.- beta
Scaling factor for the vector
Y.- y
Pointer to the input/output vectors
Ywith sizestridey*batch_size.- incy
Stride between two consecutive elements of the
yvectors.- stridey
Stride between two consecutive
Yvectors. Must be at least (1 + (len-1)*abs(incy)) wherelenismif the matrixAis non transpose ornotherwise.- batch_size
Specifies the number of matrix-vector operations to perform.
Output Parameters
- y
Output overwritten by
batch_sizematrix-vector product operations of the formalpha* op(A) *X+beta*Y.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS-like Extensions