herk#
Performs a Hermitian rank-k update.
Description
The herk routines compute a rank-k update of a Hermitian matrix
C by a general matrix A. The operation is defined as:
where:
op(X) is one of op(X) = X or op(X) = XH,
alpha and beta are real scalars,
C is a Hermitian matrix and A is a general matrix.
Here op(A) is n x k, and C is n x n.
herk supports the following precisions:
T
T_real
std::complex<float>
float
std::complex<double>
double
herk (Buffer Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
void herk(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T_real alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T_real beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)
}
namespace oneapi::mkl::blas::row_major {
void herk(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T_real alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T_real beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A’s data is stored in its upper or lower triangle. See oneMKL Defined Datatypes for more details.- trans
Specifies op(
A), the transposition operation applied toA. See oneMKL Defined Datatypes for more details. Supported operations aretranspose::nontransandtranspose::conjtrans.- n
The number of rows and columns in
C.The value ofnmust be at least zero.- k
Number of columns in op(
A).The value of
kmust be at least zero.- alpha
Real scaling factor for the rank-k update.
- a
Buffer holding input matrix
A.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*k.Ais ank-by-nmatrix so the arrayamust have size at leastlda*nRow major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*n.Ais ank-by-nmatrix so the arrayamust have size at leastlda*k.See Matrix Storage for more details.
- lda
The leading dimension of
A. It must be positive.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
ldamust be at leastn.ldamust be at leastk.Row major
ldamust be at leastk.ldamust be at leastn.- beta
Real scaling factor for matrix
C.- c
Buffer holding input/output matrix
C. Must have size at leastldc*n. See Matrix Storage for more details.- ldc
Leading dimension of
C. Must be positive and at leastn.
Output Parameters
- c
The output buffer, overwritten by
alpha*op(A)*op(A)T +beta*C. The imaginary parts of the diagonal elements are set to zero.
herk (USM Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event herk(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T_real alpha,
const T* a,
std::int64_t lda,
T_real beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event herk(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T_real alpha,
const T* a,
std::int64_t lda,
T_real beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A’s data is stored in its upper or lower triangle. See oneMKL Defined Datatypes for more details.- trans
Specifies op(
A), the transposition operation applied toA. See oneMKL Defined Datatypes for more details. Supported operations aretranspose::nontransandtranspose::conjtrans.- n
The number of rows and columns in
C.The value ofnmust be at least zero.- k
Number of columns in op(
A).The value of
kmust be at least zero.- alpha
Real scaling factor for the rank-k update.
- a
Pointer to input matrix
A.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*k.Ais ank-by-nmatrix so the arrayamust have size at leastlda*nRow major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*n.Ais ank-by-nmatrix so the arrayamust have size at leastlda*k.See Matrix Storage for more details.
- lda
The leading dimension of
A. It must be positive.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
ldamust be at leastn.ldamust be at leastk.Row major
ldamust be at leastk.ldamust be at leastn.- beta
Real scaling factor for matrix
C.- c
Pointer to input/output matrix
C. Must have size at leastldc*n. See Matrix Storage for more details.- ldc
Leading dimension of
C. Must be positive and at leastn.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- c
Pointer to the output matrix, overwritten by
alpha*op(A)*op(A)T +beta*C. The imaginary parts of the diagonal elements are set to zero.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 3 Routines