syr2k#
Performs a symmetric rank-2k update.
Description
The syr2k routines perform a rank-2k update of an n x n
symmetric matrix C by general matrices A and B.
If trans = transpose::nontrans, the operation is defined as:
where A and B are n x k matrices.
If trans = transpose::trans, the operation is defined as:
where A and B are k x n matrices.
In both cases:
alpha and beta are scalars,
C is a symmetric matrix and A,B are general matrices,
The inner dimension of both matrix multiplications is k.
syr2k supports the following precisions:
T
float
double
std::complex<float>
std::complex<double>
syr2k (Buffer Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
void syr2k(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)
}
namespace oneapi::mkl::blas::row_major {
void syr2k(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A’s data is stored in its upper or lower triangle. See oneMKL Defined Datatypes for more details.- trans
Specifies the operation to apply, as described above. Conjugation is never performed, even if
trans=transpose::conjtrans.- n
Number of rows and columns in
C.The value ofnmust be at least zero.- k
Inner dimension of matrix multiplications.The value of
kmust be at least zero.- alpha
Scaling factor for the rank-2k update.
- a
Buffer holding input matrix
A.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*k.Ais ank-by-nmatrix so the arrayamust have size at leastlda*nRow major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*n.Ais ank-by-nmatrix so the arrayamust have size at leastlda*k.See Matrix Storage for more details.
- lda
The leading dimension of
A. It must be positive.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
ldamust be at leastn.ldamust be at leastk.Row major
ldamust be at leastk.ldamust be at leastn.- b
Buffer holding input matrix
B.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
Bis ann-by-kmatrix so the arraybmust have size at leastldb*kBis ank-by-nmatrix so the arraybmust have size at leastldb*n.Row major
Bis ann-by-kmatrix so the arraybmust have size at leastldb*n.Bis ank-by-nmatrix so the arraybmust have size at leastldb*k.See Matrix Storage for more details.
- ldb
The leading dimension of
B. It must be positive.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
ldbmust be at leastn.ldbmust be at leastk.Row major
ldbmust be at leastk.ldbmust be at leastn.- beta
Scaling factor for matrix
C.- c
Buffer holding input/output matrix
C. Must have size at leastldc*n. See Matrix Storage for more details- ldc
Leading dimension of
C. Must be positive and at leastn.
Output Parameters
- c
Output buffer, overwritten by the updated
Cmatrix.
syr2k (USM Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event syr2k(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event syr2k(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A’s data is stored in its upper or lower triangle. See oneMKL Defined Datatypes for more details.- trans
Specifies the operation to apply, as described above. Conjugation is never performed, even if
trans=transpose::conjtrans.- n
Number of rows and columns in
C. The value ofnmust be at least zero.- k
Inner dimension of matrix multiplications.The value of
kmust be at least zero.- alpha
Scaling factor for the rank-2k update.
- a
Pointer to input matrix
A.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*k.Ais ank-by-nmatrix so the arrayamust have size at leastlda*nRow major
Ais ann-by-kmatrix so the arrayamust have size at leastlda*n.Ais ank-by-nmatrix so the arrayamust have size at leastlda*k.See Matrix Storage for more details.
- lda
The leading dimension of
A. It must be positive.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
ldamust be at leastn.ldamust be at leastk.Row major
ldamust be at leastk.ldamust be at leastn.- b
Pointer to input matrix
B.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
Bis ann-by-kmatrix so the arraybmust have size at leastldb*kBis ank-by-nmatrix so the arraybmust have size at leastldb*n.Row major
Bis ann-by-kmatrix so the arraybmust have size at leastldb*n.Bis ank-by-nmatrix so the arraybmust have size at leastldb*k.See Matrix Storage for more details.
- ldb
The leading dimension of
B. It must be positive.trans=transpose::nontranstrans=transpose::transortranspose::conjtransColumn major
ldbmust be at leastn.ldbmust be at leastk.Row major
ldbmust be at leastk.ldbmust be at leastn.- beta
Scaling factor for matrix
C.- c
Pointer to input/output matrix
C. Must have size at leastldc*n. See Matrix Storage for more details- ldc
Leading dimension of
C. Must be positive and at leastn.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- c
Pointer to the output matrix, overwritten by the updated
Cmatrix.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 3 Routines