syrk_batch#
Computes a group of syrk operations.
Description
The syrk_batch routines are batched versions of syrk, performing
multiple syrk operations in a single call. Each syrk
operation perform a rank-k update with general matrices.
syrk_batch supports the following precisions.
T
float
double
std::complex<float>
std::complex<double>
syrk_batch (Buffer Version)#
Description
The buffer version of syrk_batch supports only the strided API.
The strided API operation is defined as:
for i = 0 … batch_size – 1
A and C are matrices at offset i * stridea, i * stridec in a and c.
C := alpha * op(A) * op(A)^T + beta * C
end for
where:
op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,
alpha and beta are scalars,
A and C are matrices,
op(A) is n x k and C is n x n.
The a and c buffers contain all the input matrices. The stride
between matrices is given by the stride parameter. The total number
of matrices in a and c buffers is given by the batch_size parameter.
Strided API
Syntax
namespace oneapi::mkl::blas::column_major {
void syrk_batch(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)
}
namespace oneapi::mkl::blas::row_major {
void syrk_batch(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether data in
Cis stored in its upper or lower triangle. For more details, see oneMKL Defined Datatypes.- trans
Specifies op(
A) the transposition operation applied to the matrixA. Conjugation is never performed, even if trans = transpose::conjtrans. See oneMKL Defined Datatypes for more details.- n
Number of rows and columns of
C. Must be at least zero.- k
Number of columns of op(
A). Must be at least zero.- alpha
Scaling factor for the rank-k update.
- a
Buffer holding the input matrices
Awith sizestridea*batch_size.- lda
The leading dimension of the matrices
A. It must be positive.Anot transposedAtransposedColumn major
ldamust be at leastn.ldamust be at leastk.Row major
ldamust be at leastk.ldamust be at leastn.- stridea
Stride between different
Amatrices.- beta
Scaling factor for the matrices
C.- c
Buffer holding input/output matrices
Cwith sizestridec*batch_size.- ldc
The leading dimension of the matrices
C. It must be positive and at leastn.- stridec
Stride between different
Cmatrices. Must be at leastldc*n.- batch_size
Specifies the number of rank-k update operations to perform.
Output Parameters
- c
Output buffer, overwritten by
batch_sizerank-k update operations of the formalpha* op(A)*op(A)^T +beta*C.
syrk_batch (USM Version)#
Description
The USM version of syrk_batch supports the group API and strided API.
The group API operation is defined as:
idx = 0
for i = 0 … group_count – 1
for j = 0 … group_size – 1
A, B, and C are matrices in a[idx] and c[idx]
C := alpha[i] * op(A) * op(A)^T + beta[i] * C
idx = idx + 1
end for
end for
The strided API operation is defined as
for i = 0 … batch_size – 1
A, B and C are matrices at offset i * stridea, i * stridec in a and c.
C := alpha * op(A) * op(A)^T + beta * C
end for
where:
op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,
alpha and beta are scalars,
A and C are matrices,
op(A) is n x k and C is n x n.
For group API, a and c arrays contain the pointers for all the input matrices.
The total number of matrices in a and c are given by:
For strided API, a and c arrays contain all the input matrices. The total number of matrices
in a and c are given by the batch_size parameter.
Group API
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event syrk_batch(sycl::queue &queue,
uplo *upper_lower,
transpose *trans,
std::int64_t *n,
std::int64_t *k,
T *alpha,
const T **a,
std::int64_t *lda,
T *beta,
T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event syrk_batch(sycl::queue &queue,
uplo *upper_lower,
transpose *trans,
std::int64_t *n,
std::int64_t *k,
T *alpha,
const T **a,
std::int64_t *lda,
T *beta,
T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Array of
group_countonemkl::upper_lowervalues.upper_lower[i]specifies whether data in C for every matrix in groupiis in upper or lower triangle.- trans
Array of
group_countonemkl::transposevalues.trans[i]specifies the form of op(A) used in the rank-k update in groupi. See oneMKL Defined Datatypes for more details.- n
Array of
group_countintegers.n[i]specifies the number of rows and columns ofCfor every matrix in groupi. All entries must be at least zero.- k
Array of
group_countintegers.k[i]specifies the number of columns of op(A) for every matrix in groupi. All entries must be at least zero.- alpha
Array of
group_countscalar elements.alpha[i]specifies the scaling factor for every rank-k update in groupi.- a
Array of pointers to input matrices
Awith sizetotal_batch_count.See Matrix Storage for more details.
- lda
Array of
group_countintegers.lda[i]specifies the leading dimension ofAfor every matrix in groupi. All entries must be positive.Anot transposedAtransposedColumn major
lda[i]must be at leastn[i].lda[i]must be at leastk[i].Row major
lda[i]must be at leastk[i].lda[i]must be at leastn[i].- beta
Array of
group_countscalar elements.beta[i]specifies the scaling factor for matrixCfor every matrix in groupi.- c
Array of pointers to input/output matrices
Cwith sizetotal_batch_count.See Matrix Storage for more details.
- ldc
Array of
group_countintegers.ldc[i]specifies the leading dimension ofCfor every matrix in groupi. All entries must be positive andldc[i]must be at leastn[i].- group_count
Specifies the number of groups. Must be at least 0.
- group_size
Array of
group_countintegers.group_size[i]specifies the number of rank-k update products in groupi. All entries must be at least 0.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- c
Overwritten by the
n[i]-by-n[i]matrix calculated by (alpha[i]* op(A)*op(A)^T +beta[i]*C) for groupi.
Return Values
Output event to wait on to ensure computation is complete.
Strided API
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event syrk_batch(sycl::queue &queue,
uplo upper_lower,
transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
T beta,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event syrk_batch(sycl::queue &queue,
uplo upper_lower,
transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
T beta,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether data in
Cis stored in its upper or lower triangle. For more details, see oneMKL Defined Datatypes.- trans
Specifies op(
A) the transposition operation applied to the matricesA. Conjugation is never performed, even if trans = transpose::conjtrans. See oneMKL Defined Datatypes for more details.- n
Number of rows and columns of
C. Must be at least zero.- k
Number of columns of op(
A). Must be at least zero.- alpha
Scaling factor for the rank-k updates.
- a
Pointer to input matrices
Awith sizestridea*batch_size.- lda
The leading dimension of the matrices
A. It must be positive.Anot transposedAtransposedColumn major
ldamust be at leastn.ldamust be at leastk.Row major
ldamust be at leastk.ldamust be at leastn.- stridea
Stride between different
Amatrices.- beta
Scaling factor for the matrices
C.- c
Pointer to input/output matrices
Cwith sizestridec*batch_size.- ldc
The leading dimension of the matrices
C. It must be positive and at leastn.- stridec
Stride between different
Cmatrices.- batch_size
Specifies the number of rank-k update operations to perform.
- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- c
Output matrices, overwritten by
batch_sizerank-k update operations of the formalpha* op(A)*op(A)^T +beta*C.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS-like Extensions